GIEC OpenIR  > 中国科学院广州能源研究所
The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration
Cathles, L. M.1; Su, Zheng2; Chen, Duofu3
2010
发表期刊MARINE AND PETROLEUM GEOLOGY
ISSN0264-8172
卷号27期号:1页码:82-91
产权排序[Cathles, L. M.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14883 USA; [Su, Zheng] Chinese Acad Sci, Guangzhou Inst Energy Convers, CAS Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China; [Chen, Duofu] Chinese Acad Sci, Guangzhou Inst Geochem, CAS Key Lab Marginal Sea Geol, Guangzhou 510640, Guangdong, Peoples R China
通讯作者lmc19@cornell.edu
合作性质国际
摘要Pockmarks form where fluids discharge through seafloor sediments rapidly enough to make them quick, and are common where gas is present in near-seafloor sediments. This paper investigates how gas might lead to pockmark formation. The process is envisioned as follows: a capillary seal traps gas beneath a fine-grained sediment layer or layers. perhaps layers whose pores have been reduced in size by hydrate crystallization. Gas accumulates until its pressure is sufficient for gas to invade the seal. The seal then fails completely (a unique aspect of capillary seals), releasing a large fraction of the accumulated gas into an upward-propagating gas chimney, which displaces water like a piston as it rises. Near the seafloor the water flow causes the sediments to become "quick" (i.e., liquefied) in the sense that grain-to-grain contact is lost and the grains are suspended dynamically by the upward flow. The quickened sediment is removed by ocean-bottom currents, and a pockmark is formed. Equations that approximately describe this gas-piston-water-drive show that deformation of the sediments above the chimney and water flow fast enough to quicken the sediments begins when the gas chimney reaches half way from the base of its source gas pocket to the seafloor. For uniform near-surface sediment permeability, this is a buoyancy control, not a permeability control. The rate the gas chimney grows depends on sediment permeability and the ratio of the depth below seafloor of the top of the gas pocket to the thickness of the gas pocket at the time of seal failure. Plausible estimates of these parameters suggest gas chimneys at Blake Ridge could reach the seafloor in less than a decade or more than a century, depending mainly on the permeability of the deforming near-surface sediments. Since these become quick before gas is expelled, gas venting will not provide a useful warning of the seafloor instabilities that are related to pockmark formation. However, detecting gas chimney growth might be a useful risk predictor. Any area underlain by a gas chimney that extends half way or more to the surface should be avoided. (C) 2009 Elsevier Ltd. All rights reserved.
文章类型Article
其他摘要Pockmarks form where fluids discharge through seafloor sediments rapidly enough to make them quick, and are common where gas is present in near-seafloor sediments. This paper investigates how gas might lead to pockmark formation. The process is envisioned as follows: a capillary seal traps gas beneath a fine-grained sediment layer or layers. perhaps layers whose pores have been reduced in size by hydrate crystallization. Gas accumulates until its pressure is sufficient for gas to invade the seal. The seal then fails completely (a unique aspect of capillary seals), releasing a large fraction of the accumulated gas into an upward-propagating gas chimney, which displaces water like a piston as it rises. Near the seafloor the water flow causes the sediments to become "quick" (i.e., liquefied) in the sense that grain-to-grain contact is lost and the grains are suspended dynamically by the upward flow. The quickened sediment is removed by ocean-bottom currents, and a pockmark is formed. Equations that approximately describe this gas-piston-water-drive show that deformation of the sediments above the chimney and water flow fast enough to quicken the sediments begins when the gas chimney reaches half way from the base of its source gas pocket to the seafloor. For uniform near-surface sediment permeability, this is a buoyancy control, not a permeability control. The rate the gas chimney grows depends on sediment permeability and the ratio of the depth below seafloor of the top of the gas pocket to the thickness of the gas pocket at the time of seal failure. Plausible estimates of these parameters suggest gas chimneys at Blake Ridge could reach the seafloor in less than a decade or more than a century, depending mainly on the permeability of the deforming near-surface sediments. Since these become quick before gas is expelled, gas venting will not provide a useful warning of the seafloor instabilities that are related to pockmark formation. However, detecting gas chimney growth might be a useful risk predictor. Any area underlain by a gas chimney that extends half way or more to the surface should be avoided. (C) 2009 Elsevier Ltd. All rights reserved.
关键词Hydrate Seal Capillary Seal Quick Sediments Gas Seepage Gas Chimneys Rate Of Gas Chimney Formation Pockmarks Seafloor Hazards Risk Co(2) Sequestration
学科领域Geology
WOS标题词Science & Technology ; Physical Sciences
DOI10.1016/j.marpetgeo.2009.09.010
研究领域[WOS]Geology
URL查看原文
关键词[WOS]LOWER CONGO BASIN ; FLUID-FLOW ; NORWAY ; SLIDE
收录类别SCI
语种英语
项目资助者973 Program [2009CB219508]; National Science Foundation of China [40725011, U0733003]; China Scholarship Council
WOS类目Geosciences, Multidisciplinary
WOS记录号WOS:000272308200007
引用统计
被引频次:180[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.giec.ac.cn/handle/344007/8521
专题中国科学院广州能源研究所
作者单位1.Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14883 USA
2.Chinese Acad Sci, Guangzhou Inst Energy Convers, CAS Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China
3.Chinese Acad Sci, Guangzhou Inst Geochem, CAS Key Lab Marginal Sea Geol, Guangzhou 510640, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Cathles, L. M.,Su, Zheng,Chen, Duofu. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration[J]. MARINE AND PETROLEUM GEOLOGY,2010,27(1):82-91.
APA Cathles, L. M.,Su, Zheng,&Chen, Duofu.(2010).The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration.MARINE AND PETROLEUM GEOLOGY,27(1),82-91.
MLA Cathles, L. M.,et al."The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration".MARINE AND PETROLEUM GEOLOGY 27.1(2010):82-91.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
The physics of gas c(787KB) 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cathles, L. M.]的文章
[Su, Zheng]的文章
[Chen, Duofu]的文章
百度学术
百度学术中相似的文章
[Cathles, L. M.]的文章
[Su, Zheng]的文章
[Chen, Duofu]的文章
必应学术
必应学术中相似的文章
[Cathles, L. M.]的文章
[Su, Zheng]的文章
[Chen, Duofu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。