GIEC OpenIR
In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction
Xu, Yan-Tong1; Xie, Meng-Yuan1,3; Zhong, Huiqiong1; Cao, Yan1,2
2022-07-06
Source PublicationACS CATALYSIS
ISSN2155-5435
Pages9
Corresponding AuthorCao, Yan(caoyan@ms.giec.ac.cn)
AbstractWhen serving as a "precatalyst ", metal-organic frameworks (MOF) usually incur uncontrollable framework collapse in electrocatalysis. Herein, we report an anticollapse MOF-supported single-atom Cu precatalyst for electrocatalytic nitrate-to-ammonia reduction reaction (NARR), which can be applied in the rechargeable ammonia energy storage (RAES) technology. In situ X-ray absorption spectroscopy (XAS) revealed the association of the formation of real catalytic sites with the in situ clustering of single-atom Cu during NARR. Notably, the noncollapse MOF can afford the confined space to prevent the excessive aggregation of Cu atoms, leading to uniform ultrasmall nanoclusters (ca. 4 nm). Moreover, it achieves a maximal Faradaic efficiency toward NH3 of 85.5%, a formation rate of NH3 of 66 mu mol h(-1) cm(-2), and a specific activity of 53.43 mg(NH3) h(-1) mg(Cu)(-1) in 5 mM NO3- solution. The specific activity is found to be at least 3.3 times higher than that of other reported Cu-based catalysts. Density function theory (DFT) calculation further confirms the size effect and the host-guest interaction in facilitating the NO3- activation and the reaction energy decrease. Besides, it also exhibits a high selectivity of ammonia-to-nitrate of 93.3%, displaying great potential in RAES technology.
Keywordself-reconstruction metal-organic framework single-atom electrocatalytic ammonia synthesis nitrate electroreduction
DOI10.1021/acscatal.2c02033
WOS KeywordCAUCHY WAVELET TRANSFORM ; OXIDATION ; XAFS ; CU
Indexed BySCI
Language英语
Funding ProjectNSFC[22178339] ; China Postdoctoral Science Foundation[2021M690151] ; Special Research Assistant Program of the Chinese Academy of Sciences[1190000058] ; Hundred Talents Program (A) of Chinese Academy of Sciences (2019) ; Guangdong Basic and Applied Basic Research Foundation[2021A1515110069] ; Guangdong Basic and Applied Basic Research Foundation[2021000037] ; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development[2021A1515110069] ; Basic Research Program of Guangzhou City[2021000037] ; [202102020866]
WOS Research AreaChemistry
Funding OrganizationNSFC ; China Postdoctoral Science Foundation ; Special Research Assistant Program of the Chinese Academy of Sciences ; Hundred Talents Program (A) of Chinese Academy of Sciences (2019) ; Guangdong Basic and Applied Basic Research Foundation ; Guangdong Basic and Applied Basic Research Foundation ; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development ; Basic Research Program of Guangzhou City
WOS SubjectChemistry, Physical
WOS IDWOS:000830920800001
PublisherAMER CHEMICAL SOC
Citation statistics
Cited Times:62[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.giec.ac.cn/handle/344007/37040
Collection中国科学院广州能源研究所
Corresponding AuthorCao, Yan
Affiliation1.Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Peoples R China
2.Anhui Univ, Coll Chem & Chem Engn, Hefei 230601, Peoples R China
3.Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Peoples R China
First Author AffilicationGuangZhou Institute of Energy Conversion,Chinese Academy of Sciences
Recommended Citation
GB/T 7714
Xu, Yan-Tong,Xie, Meng-Yuan,Zhong, Huiqiong,et al. In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction[J]. ACS CATALYSIS,2022:9.
APA Xu, Yan-Tong,Xie, Meng-Yuan,Zhong, Huiqiong,&Cao, Yan.(2022).In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction.ACS CATALYSIS,9.
MLA Xu, Yan-Tong,et al."In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction".ACS CATALYSIS (2022):9.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Xu, Yan-Tong]'s Articles
[Xie, Meng-Yuan]'s Articles
[Zhong, Huiqiong]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xu, Yan-Tong]'s Articles
[Xie, Meng-Yuan]'s Articles
[Zhong, Huiqiong]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xu, Yan-Tong]'s Articles
[Xie, Meng-Yuan]'s Articles
[Zhong, Huiqiong]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.