GIEC OpenIR
Synthesis of highly substitutional nitrogen doped TiO2 via oxygen vacancy mediated strategy for ultrafast-charging lithium ion storage
Li, Youpeng; Zhang, Lingzhi
2022-03-01
发表期刊CHEMICAL ENGINEERING JOURNAL
ISSN1385-8947
卷号431页码:9
通讯作者Zhang, Lingzhi(lzzhang@ms.giec.ac.cn)
摘要Substitutional nitrogen (SN) doping is an effective approach to simultaneously enhance the ionic diffusion kinetics and increase the electronic conductivity of TiO2 being as host for lithium-ion storage. Nevertheless, achieving SN doping with high concentration in well-crystallized TiO2 nano-particles is still a great challenge. Herein, guided by density functional theory (DFT) calculations, an oxygen vacancy-mediated SN doping strategy is purposed to modify the surface structure of TiO2 nano-particles. A reduced TiO2-x amorphous layer with rich oxygen vacancy on the surface of TiO2 nano-particles brings about high doping concentration of SN (~13.8 atom %) and thus a TiO2@TiO2-x-SN core@shell heterojunction is constructed. The high doping concentration of SN in TiO2-x-SN shell of TiO2@TiO2-x-SN heterojunction favors the diffusion kinetics of Li+ due to the formation of local electric field at its heterointerface region and reduced diffusion barrier of Li+. Moreover, TiO2@TiO2-x-SN heterojunction shows a decreased band gap of 2.37 eV after increasing the doping concentration of SN, facilitating the transport of electrons. Thus, the TiO2@TiO2-x-SN electrode displays high reversible specific capacity of 362.7 mAh g(-1) at 0.1C and ultra-long cycling structural stability (with a capacity retention of 76.1% after 5000 cycles at 20C). A Li+ hybrid capacitor, assembled by activate carbon cathode and pre-lithitated TiO2@TiO2-x-SN anode, shows high energy/power densities (114.8 Wh kg(-1)/305.1 W kg(-1) and 90.2 Wh kg(-1)/5659.8 W kg(-1)). This work paves a way for developing high concentration of heteroatom doping metallic oxides and offers comprehensive understandings for the relationship between doping concentration of heteroatoms and energy storage mechanism.
关键词Substitutional nitrogen Kinetics DFT calculations Oxygen vacancy Electric field
DOI10.1016/j.cej.2021.134164
关键词[WOS]ANODE MATERIALS ; PERFORMANCE ; NANOTUBES ; TITANIA ; SULFUR ; LEVEL
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[22075288] ; China Postdoctoral Science Foundation[2020 M682938] ; Guangdong Basic and Applied Basic Research Foundation[2020A1515110273] ; Guangdong Province New and renewable energy research and Development and application key laboratory fund[2021000032]
WOS研究方向Engineering
项目资助者National Natural Science Foundation of China ; China Postdoctoral Science Foundation ; Guangdong Basic and Applied Basic Research Foundation ; Guangdong Province New and renewable energy research and Development and application key laboratory fund
WOS类目Engineering, Environmental ; Engineering, Chemical
WOS记录号WOS:000772782400004
出版者ELSEVIER SCIENCE SA
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.giec.ac.cn/handle/344007/36016
专题中国科学院广州能源研究所
通讯作者Zhang, Lingzhi
作者单位Chinese Acad Sci, Key Lab Renewable Energy, Guangdong Key Lab New & Renewable Energy Res & De, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Li, Youpeng,Zhang, Lingzhi. Synthesis of highly substitutional nitrogen doped TiO2 via oxygen vacancy mediated strategy for ultrafast-charging lithium ion storage[J]. CHEMICAL ENGINEERING JOURNAL,2022,431:9.
APA Li, Youpeng,&Zhang, Lingzhi.(2022).Synthesis of highly substitutional nitrogen doped TiO2 via oxygen vacancy mediated strategy for ultrafast-charging lithium ion storage.CHEMICAL ENGINEERING JOURNAL,431,9.
MLA Li, Youpeng,et al."Synthesis of highly substitutional nitrogen doped TiO2 via oxygen vacancy mediated strategy for ultrafast-charging lithium ion storage".CHEMICAL ENGINEERING JOURNAL 431(2022):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Youpeng]的文章
[Zhang, Lingzhi]的文章
百度学术
百度学术中相似的文章
[Li, Youpeng]的文章
[Zhang, Lingzhi]的文章
必应学术
必应学术中相似的文章
[Li, Youpeng]的文章
[Zhang, Lingzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。