GIEC OpenIR
Superior solar- to- hydrogen energy conversion efficiency by visible light- driven hydrogen production via highly reduced Ti2+/ Ti3+states in a blue titanium dioxide photocatalyst
De Silva, Nuwan Lakshitha1; Jayasundera, A. C. A.2; Folger, A.3; Kasian, O.3; Zhang, S.3; Yan, Chang-Feng4; Scheu, C.3; Bandara, J.1
2018-10-21
发表期刊CATALYSIS SCIENCE & TECHNOLOGY
ISSN2044-4753
卷号8期号:18页码:4657-4664
通讯作者Bandara, J.(bandaraj@ifs.ac.lk)
摘要Photocatalytic water splitting is one of the most important renewable paths and a reliable hydrogen production system. In most successful molecular and supramolecular biomimetic hydrogen production methods, a photosensitizer and a catalyst were constructed where the photoexcited electron in the photosensitizer is transferred either inter- or intramolecularly to the catalytic centre. Similar to supramolecular complexes in a photocatalytic hydrogen production scheme, here we develop a redox system that contains Ti3+/Ti2+ reduced states in TiO2 which act as both visible light harvesting components and the catalytic sites for the catalytic hydrogen production with visible-near infrared photons. The Ti3+/Ti2+ states in TiO2 produce hydrogen from pure water with a solar-to-hydrogen energy conversion efficiency of 0.89% and a quantum yield of 43% at 655 nm. The mechanism of hydrogen production by the Ti3+/Ti2+ reduced states in TiO2 involves the initial generation of highly air stable and highly reduced Ti3+ and Ti2+ states in TiO2 by the formation of an AlOOH layer surrounding the anatase and rutile particles. Once Ti3+ and Ti2+ states are generated, these states are continuously self-generated via absorption of visible-near infrared radiation where hydrogen is produced by the transfer of electrons from Ti3+/Ti2+ to H+.
DOI10.1039/c8cy01212a
关键词[WOS]TIO2 NANOTUBE ARRAYS ; ANATASE TIO2 ; OXYGEN VACANCIES ; WATER ; SURFACE ; GENERATION ; NANOPARTICLES ; IRRADIATION ; POLLUTANTS ; ELECTRODES
收录类别SCI
语种英语
资助项目AvH Foundation, Germany ; Chinese Academy of Sciences for the CAS PIFI fellowship ; National Natural Science Foundation of China[51576201]
WOS研究方向Chemistry
项目资助者AvH Foundation, Germany ; Chinese Academy of Sciences for the CAS PIFI fellowship ; National Natural Science Foundation of China
WOS类目Chemistry, Physical
WOS记录号WOS:000448144600010
出版者ROYAL SOC CHEMISTRY
引用统计
被引频次:31[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.giec.ac.cn/handle/344007/24047
专题中国科学院广州能源研究所
通讯作者Bandara, J.
作者单位1.Natl Inst Fundamental Studies, Hantana Rd,CP 20000, Kandy, Sri Lanka
2.Univ Peradeniya, Dept Chem, Peradeniya, Sri Lanka
3.Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
4.Chinese Acad Sci, Guangzhou Inst Energy Convers, Hydrogen Prod & Utilizat Lab, Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
De Silva, Nuwan Lakshitha,Jayasundera, A. C. A.,Folger, A.,et al. Superior solar- to- hydrogen energy conversion efficiency by visible light- driven hydrogen production via highly reduced Ti2+/ Ti3+states in a blue titanium dioxide photocatalyst[J]. CATALYSIS SCIENCE & TECHNOLOGY,2018,8(18):4657-4664.
APA De Silva, Nuwan Lakshitha.,Jayasundera, A. C. A..,Folger, A..,Kasian, O..,Zhang, S..,...&Bandara, J..(2018).Superior solar- to- hydrogen energy conversion efficiency by visible light- driven hydrogen production via highly reduced Ti2+/ Ti3+states in a blue titanium dioxide photocatalyst.CATALYSIS SCIENCE & TECHNOLOGY,8(18),4657-4664.
MLA De Silva, Nuwan Lakshitha,et al."Superior solar- to- hydrogen energy conversion efficiency by visible light- driven hydrogen production via highly reduced Ti2+/ Ti3+states in a blue titanium dioxide photocatalyst".CATALYSIS SCIENCE & TECHNOLOGY 8.18(2018):4657-4664.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[De Silva, Nuwan Lakshitha]的文章
[Jayasundera, A. C. A.]的文章
[Folger, A.]的文章
百度学术
百度学术中相似的文章
[De Silva, Nuwan Lakshitha]的文章
[Jayasundera, A. C. A.]的文章
[Folger, A.]的文章
必应学术
必应学术中相似的文章
[De Silva, Nuwan Lakshitha]的文章
[Jayasundera, A. C. A.]的文章
[Folger, A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。