
Bioresource Technology 101 (2010) 8784–8789
Contents lists available at ScienceDirect

Bioresource Technology

journal homepage: www.elsevier .com/locate /bior tech
Medium optimization for ethanol production with Clostridium autoethanogenum
with carbon monoxide as sole carbon source

Ying Guo a,b, Jingliang Xu a,*, Yu Zhang a,b, Huijuan Xu a, Zhenhong Yuan a,**, Dong Li a,b

a Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
b Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China

a r t i c l e i n f o
Article history:
Received 7 January 2010
Received in revised form 25 May 2010
Accepted 11 June 2010
Available online 8 July 2010

Keywords:
Syngas fermentation
Clostridium autoethanogenum
Response surface methodology
Artificial neural network
Genetic algorithm
0960-8524/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.biortech.2010.06.072

* Corresponding author. Tel.: +86 20 87057783; fax
** Corresponding author. Tel.: +86 20 87057735; fax

E-mail addresses: xjl@ms.giec.ac.cn (J. Xu), yuanzh@
a b s t r a c t

Plackett–Burman and central composite designs were applied to optimize the medium for ethanol
production by Clostridium autoethanogenum with CO as sole carbon source, and a medium containing
(g/L): NaCl 1.0, KH2PO4 0.1, CaCl2 0.02, yeast extract 0.15, MgSO4 0.116, NH4Cl 1.694 and pH 4.74 was
found optimal. The optimum ethanol yields predicted by response surface methodology (RSM) and an
artificial neural network-genetic algorithm (ANN-GA) were 247.48 and 261.48 mg/L, respectively. These
values are similar to those obtained experimentally under the optimal conditions suggested by the sta-
tistical methods (254.26 and 259.64 mg/L). The fitness of the ANN-GA model was higher than that of the
RSM model. The yields obtained substantially exceed those previously reported (60–70 mg/L) with this
organism.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Lignocellulosic biomass can be gasified into syngas and subse-
quently converted into ethanol by chemical or microbiological
means (Huber et al., 2006). Some acetogens, such as Clostridium
ljungdahlii, Clostridium autoethanogenum and Clostridium carboxid-
ivorans, can convert H2, CO and CO2 to ethanol and acids (Abrini
et al., 1994; Liou et al., 2005; Rajagopalan et al., 2002; Tanner
et al., 1993). Microbial fermentation has high end-product specific-
ity and does not require the application of high temperatures and
pressures usually needed when chemical catalysts are employed
(Ahmed and Lewis, 2007; Cotter et al., 2009a,b; Datar et al.,
2004; Rajagopalan et al., 2002). A unique feature of C. autoethano-
genum is its ability to grow on xylose. This characteristic may prove
useful when hydrolysis and gasification are combined with fer-
mentation. A majority of studies have concentrated on C. ljungdahlii
or C. carboxidivorans, while few researchers have studied the
fermentation capability of C. autoethanogenum. So, C. autoethanoge-
num was selected to be the candidate in our work.

The end products of autotrophs like C. autoethanogenum are
highly depended on the pH of the medium. Lowering the pH in-
creased ethanol production, while elevating the pH induced
growth of the autotrophs (Datar et al., 2004; Gaddy and Clausen,
ll rights reserved.
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1992; Phillips et al., 1993). Phillips et al. (1993) designed a medium
for culturing C. ljungdahlii, and a defined medium formulation was
developed by Rajagopalan et al. (2002); however, it is not known if
these media are ideal for ethanol production since ethanol is
mostly generated under non-growth conditions (Klasson et al.,
1992a,b).

Plackett–Burman (Plackett and Burman, 1946), artificial neural
network (ANN)-genetic algorithm (GA) and central composite de-
signs (CCD) (Box and Wilson, 1951; Hashimoto, 1997; Maier and
Dandy, 2000; Mcculloch and Pitts, 1949; Morimoto et al.,
1997a,b) have been proved to be useful for evaluating the relative
significance of variables and optimization of the target metabolites
production. ANN-GA used in CCD can address any required degree
of accuracy and does not need to consider continuity or differentia-
bility of the objective function (Nagata and Chu, 2003). It has been
demonstrated that ANN-GA is more accurate than response surface
methodology (RSM) (Duan et al., 2006; Erenturk and Erenturk,
2007; Garcia-Gimeno et al., 2005; Huang et al., 2007; Izadifar
and Jahromi, 2007; Singh et al., 2009; Wang and Wan, 2009).

Therefore, in this study, Plackett–Burman, ANN-GA and CCD
were used to screen the significant factors in the defined medium
developed by Rajagopalan et al. (2002) for their influence on etha-
nol production. Plackett–Burman design was applied to screen the
significant factors from the defined medium. Central composite de-
sign using RSM and ANN-GA was employed to access the optimum
concentrations of the significant variables selected through Plack-
ett–Burman design.

http://dx.doi.org/10.1016/j.biortech.2010.06.072
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2. Methods

2.1. Microorganism and medium

Clostridium autoethanogenum DSM 10061 was obtained from
the Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH (Braunschweig, Germany) and revived in DSM medium
640 which contains 5 g/L of xylose. C. autoethanogenum was trans-
ferred to the enrichment medium developed by Rajagopalan
et al.(2002) and incubated until the culture reached an OD600 of
1.2 (96–120 h) without shaking, at 37 �C. Cells were harvested by
centrifugation at 12,000g for 10 min, resuspended and inoculated
into the fermentation medium (as per experiment design Tables
1 and 2 10% of inoculum, v/v) and cultured at 37 �C with shaking
at 150 rpm for 60 h to ensure all of the CO had been exhausted
and maximum ethanol production was obtained (Barik et al.,
1988; Sim et al., 2008).

For medium optimization, the pH was fixed between 4.5 (�1)
and 5.0 (+1), NH4Cl and KH2PO4 concentrations were set at 1.0 g
(+1) and 0.1 g (+1) respectively, the CaCl2 concentration of 0.02
was set as the minimum (�1), the amount of yeast extract was
set between 0.15 (�1) and 0.3 (+1), and the MgSO4 and NaCl con-
centrations were set at 0.3 g/L (+1), 0.15 g/L (�1) and 1.0 g/L (+1),
0.4 g/L (�1) respectively (Table 1) (Andersch et al., 1984; McNeil
and Kristiansen, 1987). Concentrations varied according to the sta-
tistic matrix (Tables 1 and 2). Enrichment medium with xylose in-
stead of CO was used to initiate growth of C. autoethanogenum
before fermentation in serum bottles capped with rubber stoppers.
Fermentation with CO as carbon source was carried out with 20 ml
of medium in 100-ml infusion bags capped with rubber stoppers,
CO/CO2 (95/5, v/v), at a gauge pressure of 1 atm. The media were
buffered with 10.0 g/L of morpholinoethanesulfonic acid (MES).
The composition for trace metals and vitamins was previously de-
scribed (Rajagopalan et al., 2002). 2 g/L of tryptase (Cotter et al.,
2009a) was added to improve the ethanol production, 0.2 g/L cys-
teine-HCl (Sim et al., 2008) was used as reducing agent, and
0.5 mg/L resazurin was added as redox indicator. The final pH of
the medium was adjusted with 1 M KOH or 1 M HCl. Before steril-
ization (20 min, 121 �C), the media were placed in an anaerobic
chamber for 24–36 h. Vitamin solution and cysteine, sterilized by
filtration, were added to the medium after autoclaving. All experi-
ments were carried out in triplicate.

2.2. Extraction of ethanol and analytical methods

Cell free culture supernatant was obtained by centrifugation at
12,000g for 10 min at 4 �C and then frozen at 4 �C until analysis.
Table 1
The Plackett–Burman design for screening variables in ethanol production by using Clostr

Trail Levels Factors
NaCl (g/L) NH4Cl (g/L) KH2PO4 (g/L) MgSO4

1 1.000 1.000 0.100 0.300
�1 0.400 0.600 0.040 0.150

1 �1 �1 �1 1
2 �1 1 �1 �1
3 �1 �1 1 1
4 1 �1 1 1
5 1 �1 1 �1
6 1 1 1 �1
7 1 1 �1 1
8 �1 1 1 �1
9 1 �1 �1 �1

10 �1 �1 �1 �1
11 �1 1 1 1
12 1 1 �1 1
Ethanol concentration was measured with a gas chromatograph
(Agilent 6820) equipped with a flame ionization detector (FID)
and a fused-silica capillary column (DB-FFAP, 30 m � 0.25 mm �
0.25 lm). Nitrogen was used as carrier gas at a flow rate of
30 mL/min and split ratio of 1/50.The injector and detector tem-
perature were 250 and 300 �C, respectively. The initial oven tem-
perature was 40 �C. After 5 min, the temperature was increased
at a rate of 20 �C /min until it reached 140 �C, and then increased
at a rate of 40 �C/min until it reached 250 �C.
2.3. Plackett–Burman design

The Plackett–Burman design was firstly employed to identify
the significant variables on ethanol production from the main
inorganic components, yeast extract and pH. According to
Plackett–Burman design (Plackett and Burman, 1946), each vari-
able is represented at two levels, high (+1) and low (�1). In this
study, seven assigned variables together with four dummy vari-
ables were tested in 12 experiments. The effect of variables was
firstly computed as followed:

EVi ¼
P

yVi þð Þ �
P

yVi �ð Þ

N=2
ð1Þ

where EVi represents the effect of variable i, yVi þð Þ and yVi �ð Þ are the
response of the high and low levels of variable i, respectively, N
stands for number of trials.

And then the standard deviation (SD) of dummies was calcu-
lated by Eq. (2):

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðEdÞ2

n

s
ð2Þ

where SD represents the effect of dummy variables, and n is the
number of the dummy variables. T-test was finally performed as fol-
lows to determine the significance of these factors.

tVi ¼
EVi

SD
ð3Þ

Four dummy variables were studied in 12 experiments to calcu-
late the standard error. R2 (the coefficient of determination) was
used to examine the fitness of the Plackett–Burman design. Aver-
age value of ethanol production was taken as the response. Vari-
ables with confidence levels above 90% were considered to have
significant effect on ethanol production and thus were used for fur-
ther optimization.
idium autoethanogenum.

Ethanol (mg/L)
(g/L) CaCl2 (g/L) Yeast extract (g/L) pH

0.040 0.300 5.00
0.020 0.150 4.50

1 1 �1 38.1 ± 1.52
�1 1 1 97.8 ± 4.31

1 �1 1 43.4 ± 1.35
�1 1 �1 69.6 ± 3.12
�1 �1 1 96.0 ± 4.24

1 1 �1 164.94 ± 5.67
�1 �1 �1 143.10 ± 5.12

1 �1 �1 144.81 ± 5.01
1 1 1 79.84 ± 4.31
�1 �1 �1 116.45 ± 3.62
�1 1 1 36.62 ± 1.67

1 �1 1 45.27 ± 2.14



Table 2
The experimental results together with RSM and ANN predictions of CCD design in the terms of ethanol yield.

Trail Levels Factors Ethanol (mg/L)

NH4Cl MgSO4 pH
X1 (g/L) X2 (g/L) X3

1.68179 2.3409 0.1841 5.00 RSM ANN Experimental
1.00000 2.0000 0.1500 4.80
0 1.5000 0.1000 4.50
�1.00000 1.0000 0.0500 4.20
�1.68179 0.6591 0.0159 4.00

1 �1.00000 �1.00000 �1.00000 158.26 150.42 152.68 ± 4.12
2 1.00000 �1.00000 �1.00000 150.41 144.22 145.85 ± 5.07
3 �1.00000 1.00000 �1.00000 173.27 168.86 168.00 ± 4.19
4 1.00000 1.00000 �1.00000 234.88 241.08 242.62 ± 5.52
5 �1.00000 �1.00000 1.00000 210.04 200.15 202.29 ± 5.15
6 1.00000 �1.00000 1.00000 180.23 180.83 185.49 ± 4.01
7 �1.00000 1.00000 1.00000 199.85 205.45 204.40 ± 5.21
8 1.00000 1.00000 1.00000 239.49 237.29 245.07 ± 5.54
9 �1.68179 0.00000 0.00000 181.02 190.53 189.37 ± 4.75

10 1.68179 0.00000 0.00000 207.75 205.36 199.41 ± 3.35
11 0.00000 �1.68179 0.00000 140.06 151.58 147.57 ± 4.96
12 0.00000 1.68179 0.00000 202.51 197.24 195.01 ± 5.65
13 0.00000 0.00000 �1.68179 197.78 203.86 202.34 ± 4.87
14 0.00000 0.00000 1.68179 245.20 246.42 240.65 ± 5.09
15 0.00000 0.00000 0.00000 235.57 233.54 235.91 ± 3.72
16 0.00000 0.00000 0.00000 235.57 233.54 235.83 ± 3.65
17 0.00000 0.00000 0.00000 235.57 233.54 235.62 ± 3.85
18 0.00000 0.00000 0.00000 235.57 233.54 235.46 ± 4.21
19 0.00000 0.00000 0.00000 235.57 233.54 235.31 ± 3.97
20 0.00000 0.00000 0.00000 235.57 233.54 235.29 ± 4.43

Table 3
Effects of Plackett–Burman design for ethanol production.

Symbol Effect t-value P-value

NaCl (g/L) x1 20.26 1.59 0.187
NH4Cl (g/L) x2 31.50 2.47 0.069
KH2PO4 (g/L) x3 5.81 0.46 0.672
MgSO4 (g/L) x4 �53.94 �4.23 0.013
CaCl2 (g/L) x5 �7.20 �0.56 0.602
Yeast extract (g/L) x6 �17.00 �1.33 0.253
pH x7 �46.36 �3.64 0.022

SD = 22.09, R2 = 91.31%, R2 (adj)=76.11%.

Table 4
Analysis of variance for the quadratic response surface model.

Term Coefficient Standard error t-value P-value

Constant 235.573 3.087 76.320 <0.0001
X1 7.948 2.048 3.881 0.003
X2 18.567 2.048 9.066 <0.0001
X3 14.097 2.048 6.884 0.001

X2
1

�14.563 1.994 �7.305 <0.0001

X2
2

�22.728 1.994 �11.401 <0.0001

X2
3

�4.978 1.994 �2.497 0.032

X1 X2 17.364 2.676 6.489 <0.0001
X1 X3 �5.491 2.676 �2.052 0.067
X2 X3 �6.302 2.676 �2.355 0.040
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2.4. Central composite design

A five-variable central composite design was used to optimize
important valuables selected by the Plackett–Burman design. Cen-
tral composite design (Box and Wilson, 1951) consists of a 2k full
factorial design, 2k axial designs at a distance a from the origin,
and m center points, where k is the number of valuables and m is
more than 1. Eq. (4):

Xi ¼
ðAi � A0Þ

DA
ð4Þ

describes the relationship between the coded values and actual val-
ues, where Xi represents coded value, Ai is the actual value, A0 is the
actual value of the variables at the centre point, and DA is the step
change.

2.4.1. Response surface methodology
The statistical technique, Response Surface Methodology, was

employed to optimize the screened variables, and the relationship
between variables and responses was expressed by a second order
polynomial Eq. (5):

Y ¼ b0 þ
X3

i¼1

biXi þ
X3

i¼1

biiX
2
i þ

X2

i¼1

X3

j¼iþ1

bibjXiXj ð5Þ

where Y is the predictive response; b0 is offset term; Xi, and Xj stand
for the independent variables; bi, bii and bij represent regression
coefficients of the model.

2.4.2. Artificial neural network and genetic algorithm
ANN model together with GA was also employed to access the

optimum concentration. The variables selected through Plackett–
Burman design were included as input variables, and the yield of
ethanol as output, and they were scaled by Eq. (6):

X� ¼ 2
X � Xmin

Xmax � Xmin
� 1

Y� ¼ Y � 0
500� 0

ð6Þ
And these values were rescaled by Eq. (7):

X ¼ ðXmax�XminÞðX�þ1Þ
2 þ Xmin

Y ¼ 500� Y�
ð7Þ
2.5. Statistical analysis

Experimental designs and corresponding data were conducted
with the help of Minitab 15.0 (Minitab Inc., Pennsylvania, USA).The
ANN models and GA described in this study were implemented
with Matlab v6.5 software.
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Fig. 1. Contour plot for ethanol production by Clostridium autoethanogenum, (a) effects of magnesium sulfate and ammonium chloride, (b) effects of pH and magnesium
sulfate, (c) effects of pH and ammonium chloride.
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3. Results and discussion

3.1. Plackett–Burman design

Plackett–Burman design was adopted to screen the important
fermentation parameters which have significant effects on ethanol
production with C. autoethanogenum. NaCl, NH4Cl, KH2PO4, MgSO4,
CaCl2, yeast extract and pH were selected through 12 runs with the
Plackett–Burman design. The design matrix and its corresponding
yield are illustrated in Table 1. Table 3 shows the main effects of
each medium constituent, its associated t-values and p-values.
According to the Plackett–Burman design, NaCl, NH4Cl, and
KH2PO4 had positive effects and thus a +1 level would be expected
to improve the production of ethanol. MgSO4, CaCl2, Yeast extract,
and pH showed negative effects, and a �1 level would be helpful
for the high production of ethanol. As a result, a medium contain-
ing (g/L), NaCl 1, KH2PO4 0.1, CaCl2 0.02, yeast extract 0.15 was
chosen. Dummy variables were used to calculate standard devia-
tion (SD), t-values and p-values. The SD of 22.09 indicated interac-
tions among the factors. MgSO4, NH4Cl and pH, which had a p-
value less than 0.1, were significant compositions that affected
the yield of ethanol production. In the results listed in Table 3, R2

was 0.9131, which means that model could explain 91.31% of the
total variations in the system. The optimum value of MgSO4, NH4Cl
and pH, were further investigated by CCD.

3.2. Central composite design

MgSO4, NH4Cl and pH screened by the Plackett–Burman design
were further studied by central composite design to establish their
optimum levels. The central composite design consisted of a 23 full
factorial design, 2�3 axial designs and 6 center points, that is, a to-
tal number of 20 experiments. The design matrix of CCD, the vari-
ables and corresponding results are presented in Table 2.

3.2.1. Response surface methodology
The relationship among MgSO4, NH4Cl and pH were identified

by RSM. Table 4 presents an analysis of variance (ANOVA) for the
quadratic response surface model. According to the regression
analysis of the experimental design, the interactive model term
NH4Cl�pH, with a p-value of more than 0.05, was insignificant,
while all the other model terms (p < 0.05) were significant. The fit-
ness of the polynomial model equation was judged by R2. A R2 va-
lue of 97.34% and an adjusted R2 value of 94.94% confirmed good
agreement. Therefore, the results in terms of the production of eth-
anol can be illustrated by the following quadratic regression
equations:

Y ¼ 235:573þ 7:984X1 þ 18:567X2 þ 14:097X3 � 14:563X2
1

� 22:784X2
2 � 4:978X2

3 þ 17:364X1X2 � 6:302X2X3

where the production of ethanol as Y is a multiple function of the
MgSO4 and NH4Cl concentrations and pH.

The RSM predicted model is presented as three-dimensional
graphs in Fig. 1a–c to indicate the interaction among the variables
that influenced the production of ethanol. The optimal process
parameters of RSM model were established by the central point
of the contour plot. The predicted highest ethanol production of
247.48 mg/L could be obtained at a concentration 0.120 g/L MgSO4

and 1.661 g/L NH4Cl at a pH 4.80. Experimental ethanol production
of 254.26 mg/L was obtained under these optimum conditions.

3.2.2. Artificial neural network and genetic algorithm
Fig. 2 compares the ethanol yields predicted by the ANN and

RSM with the corresponding experimental yields. The standard
deviation S was introduced to analyze residual of ANN and RSM.
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SRSM=ANN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
PredictionRSM=ANN � Zero error
� �2

20

s

Since the SRSM of 5.35 was higher than the SANN of 3.29, the fitness
and prediction accuracy of the ANN model was higher than that of
the RSM. For the GA-derived optimal conditions, optimum values of
ethanol production were obtained over 50 generations (Fig. 3). At
pH 4.74 and MgSO4 and NH4Cl concentrations of 0.116 and
1.694 g/L, respectively, the maximum achievable ethanol produc-
tion was 261.48 mg/L according to the ANN-GA model. The experi-
mental ethanol yield under the above conditions was 259.64 mg/L,
which was near 254.26 mg/L, the ethanol yield obtained under the
condition recommended by RSM model. Therefore, the ANN-GA
model performed better than RSM model in the optimization stud-
ies. Fig. 4 shows ethanol production over time using the optimal
media suggested by RSM and ANN-GA. The maximum ethanol pro-
duction was obtained at 60 h. After 60 h, production decreased
slightly, which is attributable to the depletion of CO.

It is noteworthy that the end-products of autotrophs also de-
pend on the mass transfer of substrate to the cell and the redox po-
tential environment (Phillips et al., 1993; Sim et al., 2008). In the
infusion bag system, the effects of CO and reducing environment
were negligible. The pressure in the infusion bag was stable at
1.0 atm and thus the different amounts of CO, in the bag, had the
same chance to dissolve. Reducing environments were the same
for all samples at the beginning (0.2 g/L cysteine-HCl). In this
study, the effect of key CO-utilizing enzymes during fermentation
was attributed to the different composition of the media which
also play a significant role in the redox environment. The pH was
adjusted with KOH or HCl, and different pHs resulted in different
concentrations of Cl� and K+. However, this concentration was rel-
atively low compared with the existing Cl� (existing as KCl, NaCl,
CaCl2 and NH4Cl) and K+ (existing as KCl and KH2PO4). Our optimal
ethanol concentration, around 260 mg/L was still low compared
with ethanol yields obtained with enzymes or chemical catalysis
which can be as high as 50 g/L in less than three days (Munasinghe
and Khanal, 2010). Therefore further studies are required to im-
prove the yield of ethanol with this bacterium cultured on syngas.
4. Conclusion

Plackett–Burman and central composite designs were used to
optimize ethanol production from CO by C. autoethanogenum. The
predicted and experimentally achieved yields were in good agree-
ment, but the yield has to be improved further for this bacterium to
be useful for large-scale ethanol production from syngas.
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